
RUNES: a Real Ubiquitous Network Elaboration Solution?
Paul Antonelli

M2 IFI IAM
14 av Charpentier

06100, Nice, France
+ 33 6 21 06 80 46

antonell@polytech.unice.fr

Olivier Barafani
SI5 IAM

15 av. Jean Cuméro
06130, Grasse, France

+33 6 13 58 19 92

barafani@polytech.unice.fr

Nicolas Galea
M2 IFI IAM

10 petite av. des Orangers
06100, Nice, France
+33 6 06 53 66 08

ngalea@polytech.unice.fr

Alexandre Jannotta
SI5 IAM

31 av. F. Mistral
06130 Grasse, France

+33 6 15 33 32 65

jannotta@polytech.unice.fr

ABSTRACT
A quick analysis of RUNES real capabilities to handle

heterogeneous and ubiquitous network embedded systems and

environment.

Categories and Subject Descriptors
D.3.2 [JAVA, C]: Ubiquitous computing Middleware –

middleware, sensors, network communication.

C.2.1 [Network Architecture and Design]: Automatic

reconfiguration.

C.2.2 [Network Protocols]: Protocols for heterogeneous

networks – IPv4, IPv6, MAC, gateway.

General Terms
Design, Reliability, Documentation, Verification.

Keywords
Ubiquitous computing, middleware, heterogeneous network,

components, services.

1. INTRODUCTION
There are more and more middleware for ubiquitous application

development. This article is about one of them: RUNES,

"Reconfigurable Ubiquitous Network Embedded Systems", a

European project. Because it is one of the most advanced, we are

going to analyze if its architecture is a real solution for

heterogeneous and ubiquitous network embedded applications

development.

2. APPLICATIONS DOMAINS
Middleware are generally designed to respond to a concrete need.

RUNES is not an exception. Because ubiquitous computing is

more and more widespread but on various systems and

heterogeneous network, middleware are important to simplify

development for concrete applications domains. RUNES is about

manage some of them.

2.1 Healthcare
Cost of healthcare increases each year. Because of this, we need

to find solutions more efficient that the basic system of seeing

doctors only if patients have problems. The basis is so to provide

healthcare services and monitoring solutions closer to patients that

must run well everywhere, regardless of the network environment,

to help diagnostic just in time.

Cardiac monitoring is a good example of such applications.

Cardiac problem is one of the most important causes of mortality.

Symptoms are many: fatigue, decreased exercise tolerance,

unexplained cough, decreased food intake, delirium, abdominal

symptoms… This kind of disease implies that the patient must be

mobile and active to reduce the apparition of more problems.

Because of this, we need a real-time monitoring system. In-home

package of sensors can be easily installed: RFID tags to locate the

patient in the house and evaluate mobility, weight sensors in the

bathroom floor. The patient can also handle a portable monitoring

system that has sound sensors to monitor patient’s breath, blood

pressure and pulse sensors. All of these sensors values have to be

collected, here with the RUNES middleware. Critical information

has to be sent to the local clinic with secured connection. Cardiac

specialist can give better treatment regime that was adjusted and

specify more appropriate activities to the patient. The patient can

receive all these information and can communicate with specialist

with an in-home interface, also handle by the RUNES

middleware.

Today, there are no unified solutions to develop concrete global

healthcare application like this example. RUNES directly compete

with middleware like Context Toolkit but has the advantage of

offering a hardware abstract layer for sensors.

However, it appears that RUNES maybe is a too much complex

firmware. In the case of a simple healthcare device that monitor

blood pressure and pulsation, it is maybe more easy to develop a

simple application for it.

2.2 Automotive safety and security
Modern vehicles have already a lot of embedded electronic

sensors and actuator that have to be driven by more and more

software. Because of increasing difficulties to factorize code for

this, even for car models of the same car maker, the need for a

reliable middleware is important.

Assisting drive is a key feature for enhance safety and security on

cars. Many sensors like ABS sensor, wheel pressure, and engine

various sensors can help, with a smart monitor software

controller, to have safer driving conditions.

Such applications are real stakes as great car makers, like BMW

with "ConnectedDrive", or the "CAR 2 CAR" consortium (Audi,

BMW, DaimlerCrysler, Fiat, Renault, Volkswagen…) are

working on them. The need for unifying theses applications is

important for such consortium.

However, RUNES, does not handle concrete network issues like

connections and disconnections on the fly between cars. This have

to be solved by car makers.

2.3 Factory automation
Today industries search to produce more and more at lower and

lower costs. Mass production needs also flexibility to reach

customization level that users want. Waste and time of operations

have to be reduced. For this purpose, manufacturing facilities

have to be monitored to control process and improve manufacture

performance.

Wine production, which represents a global market of 150 billions

€, is a good example for such applications that can handle

RUNES. Quality of wine is important and depends on production

and distribution chains. Currently, tracking and monitoring

systems exist but with no seamless link between these 2 chains

and information are lost. "Eurojenet Wine" for example can

monitor the production but not the distribution. Unified

monitoring system for such heterogeneous environment is the key

to provide better quality of wine. For example, light, moisture,

heat measurement for agriculture, grape acquisition, barrel

management, laboratory controls can be monitored in the

production chain while temperature, humidity, pH, CO2

measurement for bottles or tanks can be reviewed in the

distribution chain. Vehicles can also be managed to provide

cooperative distribution chain with multiples transportation ways.

However, replace such existing monitoring application by

RUNES for wine production chain may be complex and

expensive for adding distribution chain monitoring. It appears that

RUNES does not offer any solutions yet to integrate itself with

other best known middleware like OSGi, ContextToolKit,

Fractal…

2.4 In-home safety and security
Enhancing home safety and security against thieves for regular

users is a great stake that represents an important market. Sensors

must be added at home and applications have to be easy to

develop. RUNES is designed to handle multiples sensors or

devices on a heterogeneous network system.

As we live older, old people safety and security is very important.

Multiple sensors can be installed to send their information to a

monitoring system handle by RUNES that can help healthcare

specialists to detect abnormal behavior of old people. Currently,

CSTB "GERHome", a well advanced project, uses OSGi and has

lead to concrete sensors development.

3. OPERATING PRINCIPLES – THE

TUNNEL FIRE SCENARIO
These applications are some examples that can be handled by

RUNES. However, the main scenario studied for this middleware

is a tunnel fire. In 2012, on a busy day, in a old tunnel, several

vehicles, including a tanker loaded with vegetable oil, have a

collision. The oil leak over the road and begin to get in fire. The

scenario shows all the issues that RUNES have to solve as it

combines an urgency state, emergency coordination, healthcare

monitoring (2.1), car communications (2.2) and heterogeneous

systems (2.3).

3.1 Network Adaptation
In this section we will look at the network where RUNES is

supposed to operate. In fact we are going to see that RUNES is

effective but only on simple networks.

3.1.1 Network Architecture
RUNES uses a network divided in 3 layers. The first one is a

primitive sensor node. It is used to collect data on the field and it

is relied to a gateway. The second layer is a sensor routing node.

The previous node uses it as a gateway. The last one is a pure

routing node. It has at least 2 network interfaces. One is to

connect sensor routing node each other, and another is to rely

rooting node.

An advantage of this architecture is to have a simple network

organization. And it can simplify applications deployment. But in

other side this can be too simple to models the heterogeneity of

existing networks.

3.1.2 Network Movement Reaction
Even if RUNES uses simple network architecture, there is an

issue that it does not completely solve. This is the network

movement reaction.

This issue can be encountered in two main situations. The first

one is when we have a broken connection on the network. The

second is when a sub-system is moving (like a car along the

tunnel).

The authors of RUNES study some solutions but do not arrive to a

final one. Currently they don't explain how the network must

react, they don't say neither how application was notify. In fact

they try to find a solution without consider existing systems (like

mobile phone) where this issue is still unsolved.

In the Tunnel fire scenario, they just give the example of a broken

link. This link is just replaced by radio-frequency communication.

But we don't have the process way when this radio-frequency

communication doesn't exist.

3.1.3 Organization Sample

Figure 1. Network Field Sample

In the Figure 1, we have an example of the network that could be

deploy in the tunnel. We find the 3 different types of nodes (Red

for the routing node, Yellow for the Sensor routing node, and

Blue for the Sensor node).

In the first look we can easily understand that this architecture can

be efficient.

In the second look we see that it is a RUNES network designed

for RUNES applications. But today we know there are many

different networks and many existing application. And in fact we

can understand that RUNES just search to replace existing system

to make it better: RUNES is like a reinvention of the wheel. But if

we look at the past, experience says that is not always efficient.

3.1.4 Network Issues
After these sections we must add classic network problems.

The first and main problem is security. In RUNES specification

there is no given process to protect data.

The second problem is localization. It is explained that RUNES

must be auto configurable, but when we had a sensor to the

network, it is impossible to know where it is without manual

configuration. So if we have no static localization, we can't have

localization for a mobile system.

The last problem is network saturation. With many sensors, we

have many communications. And if we use RF communication we

can easily reach the maximum bandwidth. That can provide a

heavy load of information treatment. So to not have saturation it

must implement data filter and communication prediction.

3.2 Component architecture
You can find the component model in three RUNES

implementations in C/Linux, C/Contiki and in Java. As the

C/Contiki version has few limitations because of the OS, and the

C/Linux does not represent the exact architecture because of the

procedural aspect of C, we will explore opportunities available in

java.

3.2.1 Presentation of the model
The connection between components is done using interfaces and

receptacles. A receptacle represents the component that can

provide a service while an interface is a client of it.

Figure 2. A pictorial representation of a component

A component has the possibility to implement several interfaces

and containers. Complex architectures may be realized from this;

moreover it is possible to produce components that are composite,

i.e. composed by other components. It can, within an application,

define precise component features, for example in the case of the

tunnel fire scenario, we can represent the firefighter entity like a

component composite that is build with other component like his

helmet or his leather.

3.2.2 Connection between components
The connection between the two entities is done through a

"Connector" which is a particular component. This one provides

properties of introspection to architecture, possibilities of adding

interceptors on receptacles and interfaces. We can also specify pre

and post-conditions at the invocation of components for adding

checks or additional security to architecture.

Figure 3. Representation of the connector component

3.2.3 Capacity of reflexivity
In RUNES architecture, there is a component called "Capsule". In

this, we can deploy other components with possibilities of

reflectivity are offered. We can follow the life cycle of the

component, but also instantiate other components. The "Capsule"

has the feature to keep interfaces and receptacles of each

component instantiated, so it is easy to disconnect a component

and replace it with another or search component attributes.

Possibilities of reflexivity and introspection are important for the

model including the target. Considering the case of a server that

accepts a certain amount of connection, the component

connections manager may for example be "unplugged" if the

maximum number of users is reached.

In fact, RUNES default – and only! – implementation can only

load components based on the exact string pattern of their class

names. In the case of the fire tunnel scenario, this can be an issue

if we want to search and load in the architecture any component

that provides temperature sensors.

3.2.4 Comparison with an existing model

3.2.4.1 Presentation of Fractal component
The characteristics of RUNES can be found in a component

model such as "Fractal", the differences are in the implementation.

Fractal is a modular, extensible and programming language

agnostic component model that can be used to design, implement,

deploy and reconfigure systems and applications, from operating

systems to middleware platforms and to graphical user interfaces.

A component can be represented with some client and server

interfaces ("receptacles" in RUNES model), some controller,

interceptor and a membrane.

3.2.4.2 Differences between the two models
In fractal, each component has a "membrane", which adds

reflexivity properties. The life cycle is managed by this

membrane.

In the case of the tunnel fire scenario, this difference is important.

In fact, if a RUNES capsule system host is broken by a fuel tank

explosion, all components managed by the capsule will disappear,

even if components are not in this damaged system. With Fractal,

each component is independent. Doing the same thing on RUNES

implies that each component is implemented along with a capsule,

making more complexity to the development as it is done

automatically in Fractal.

Figure 4. Representation of a Fractal component

However, in RUNES we have the opportunity to choose the

components that will have a configuration at runtime with the

"Capsule", while in Fractal all the components use reflexivity.

This is significant because through the "Capsule" if we desire to

obtain such attributes of a component, the components being

stored in a Hashtable, it is relatively easy to find. In Fractal, for

against, it is not uncommon to have to go up among all interfaces

from the component "root" to find the desired one.

Fractal has a language of architecture definition, to "bind"

components easily and provides a degree of visibility compared to

RUNES, in where we have to specify all binding by hands in a

capsule.

3.3 Component based middleware services
We will now describe the component framework abstraction used

to build RUNES’ component based middleware services. We will

follow by a short summary and analysis of the main services that

may be used in RUNES’ reference scenario.

3.3.1 The component framework abstraction

3.3.1.1 Overview
A component framework is an encapsulated composition of

components that addresses some focused area of functionality. It

must allow the acceptation of additional components known as

"run-time plug-ins" that may somehow modify or extend the

component framework’s (CF) behaviour. Notice that CFs are

components themselves. Because of this, a CF (containing other

CFs, in a recursive manner) built to provide a set of functionalities

is finally called "service". In practical terms, the goal of CFs is to

help developers in composing components together according to a

set of constraints (e.g., defined in a specific language such as

OCL).

For instance, a component framework can represent a network

stack, and hence require (at the very minimum) the presence of a

component implementing a "MAC" interface as well as a

component implementing a "routing" interface. A constraint can

be defined over this grouping such that the routing component can

be stacked on top of the MAC component, but not vice-versa.

Furthermore, a plug-in component implementing any kind of

additional functionality on top of the routing component can be

dynamically added to the CF if it meets the set of constraints

present at the time it tries to enter the CF.

3.3.1.2 Benefits
The benefits of CFs are various. Firstly, they provide intermediate

abstractions between components and whole systems, acting as a

scoping mechanism. Therefore, they generally increase

understand ability and maintainability of systems. Secondly, they

simplify component development and assembly through design

reuse and guidance to developers. Finally, they enable the use of

lightweight components (plug-ins) that can be linked by assuming

they share CF-specific state and services.

However, by adding more and more CF services, increasing the

size of the "stack" used by this final component and thus its own

size, this could lead to difficulties in the understanding or the

analysis of what happens precisely at a given time in such

component.

3.3.2 RUNES’ main CF based services
Having described the component model (middleware kernel), and

the CF abstraction, we will now try to see how this can lead to the

support of various middleware services — i.e., services that can

underpin application scenarios such as "the tunnel fire".

3.3.2.1 Network and Interaction services
The network services CF supports an extensible set of plug-in

network communication services and provides a uniform set of

APIs to these. It accommodates both ad-hoc networking and

infrastructure-based networking. The interaction services CF

supports an extensible set application-level "interaction

paradigms" that may be layered on top of the Network Services.

Examples of plug-ins accepted by this CF include: tuple spaces,

reliable multicast, publish-subscribe and event notification,

remote procedure call, etc. Many such plug-ins can coexist

depending on application needs. The use of both of these services

will allow the rescue team to get data from the whole remaining

devices connected to a reachable node of the system.

3.3.2.2 Advertising and discovery services
One of the pivotal requirements of ubiquitous computing is the

ability to discover devices and services that are offered in the

environment. Using this service, the devices can potentially

connect to different types of networks, either concurrently or at

different times, with different hardware. Moreover, it can support

many different protocols for advertising and discovery. In the

emergency scenario of the disaster in the tunnel, as the rescue

team is not aware of the configuration of the network and the

measurements offered by devices installed in the tunnel (or worn

by people), the advertising and discovery framework can be used

to offer an up to date image of which devices are available and

what services they offer.

3.3.2.3 What if some services lack?
For instance, despite its key role in such systems, it seems that

there is no ―Security services CF‖ actually available on RUNES

Project, in order to protect communications of all the devices. It

must probably be still in development and it may also be the same

for other services or plug-ins. In the case of the lack of a CF-

specific plug-in of a given CF service, the developer will have to

build by his own the needed functionality that will finally be

added to the existing CF. However, building from scratch a new

CF able to fulfil a set of services and to communicate with

existing ones, seems to be much more complex and tend to be

impossible for a non-member of the RUNES' project team.

4. CONCLUSION
RUNES is a component-based middleware for ubiquitous

applications over heterogeneous networks. Despite of the fact that

it is a great European project with a lot of ambition, it appears that

this middleware does not solve important issues like concrete

network installation and reconfiguration, even if this network is a

RUNES' dedicated one. The other issue is also that it cannot

natively interact with existing middleware and solutions like

OSGi or Context Toolkit.

In fact, we have to consider the size of the project and the number

of participant as it is a European project with universities and

industries. RUNES is promising big not finished project that can

evolve and solve many of its issues in the future.

5. ACKNOWLEDGMENTS
Our thanks to Polytech' Nice – Sophia for allowing us to study

middleware for ubiquitous computing.

6. REFERENCES
[1] University College London, ―RUNES

Reconfigurable Ubiquitous Networked Embedded

Systems‖, 2004-2006:

http://www.ist-runes.org/

http://runesmw.sourceforge.net/contiki.html

http://www.ist-runes.org/potential_apps.html

http://www.ist-runes.org/scenario.html

[2] Domonkos Asztalos (ETH), Karen Lawson (Kodak),

Stephen Hailes (UCL), Lesley Hanna (Sira), Ingolf Krüger

(UCSD) , "Application Scenario Building/Definition" ,

31/03/2005:

http://www.ist-runes.org/docs/deliverables/D2_01.pdf

[3] Eurojenet, 2006:

http://www.eurojenet.com/

[4] OSGi Alliance, OSGi middleware, 2009:

http://www.osgi.org/

[5] Anind K. Dey, Alan Newberger, University of Berkeley,

Context Toolkit, 2003:

http://contexttoolkit.sourceforge.net/

[6] CSTB, projet GERHOME, 2008:

http://gerhome.cstb.fr/

[7] Adam Dunkels (SICS), Björn Grönvall (SICS), Mattias

Johansson (EAB), Karl Mayer (IABG), Frank Oldewurtel

(RWTH), Ossi Raivio (RWTH), and Janne Riihijärvi

(Editor, RWTH), "Review Document:

Existing architectures and components", 31/12/2004:

http://www.ist-runes.org/docs/deliverables/D1_01.pdf

[8] Mattias Johansson (Editor, EAB), Domonkos Asztalos

(ETH), Preliminary Verification and Validation Report,

15/10/2006:

http://www.ist-runes.org/docs/deliverables/D1_05_02.pdf

[9] E. Bruneton (France Telecom R&D), T.Coupaye (France

Telecom R&D), J.B. Stefani (INRIA), The Fractal

Component Model, 05/02/2004:

http://fractal.objectweb.org/specification/index.html

[10] Paolo Costa, Geoff Coulson, Cecilia Mascolo, Luca

Mottola, Gian Pietro Picco and Stefanos Zachariadis In

International Journal of Wireless Information Networks,

"Reconfigurable Component-based Middleware for

Networked Embedded Systems". Springer. June 2007:

www.cl.cam.ac.uk/~cm542/papers/jwin.pdf

[11] Cecilia Mascolo, Stephen Hailes, Leonidas Lymberopoulos

(University College London), Gian Pietro Picco, Paolo

Costa (Politecnico di Milano), Gordon Blair, Paul Okanda,

Thirunavukkarasu Sivaharan (University of Lancaster),

Wolfgang Fritsche, Mayer Karl (Indusrieanlagen-

Betriebsgesellschaft mbH), Miklós Aurél Rónai, Kristóf

Fodor (Ericsson Research, Traffic Lab), Athanassios Boulis

(National ICT Australia), "Survey of Middleware for

Networked Embedded Systems", 07/01/2005:

www.ist-runes.org/docs/deliverables/D5_01.pdf

[12] Cecilia Mascolo, Stefanos Zachariadis(University College

London), Gian Pietro Picco, Paolo Costa (Politecnico di

Milano), Gordon Blair, Nelly Bencomo, Geoff Coulson,

Paul Okanda, Thirunavukkarasu Sivaharan (University of

Lancaster), "Runes Middleware Architecture", 30/05/2005:

www.ist-runes.org/docs/deliverables/D5_02.pdf

[13] Cecilia Mascolo, Stefanos Zachariadis (University College

London),Gian Pietro Picco, Paolo Costa, Luca Mottola

(Politecnico di Milano),Gordon Blair, Nelly Becomo, Paul

Okanda, Thirunavukkarasu Sivaharan (University of

Lancaster), ―Runes Middleware Architecture Version 2‖,

10/11/2005:

www.ist-runes.org/docs/deliverables/D5_02_01.pdf

http://www.ist-runes.org/
http://runesmw.sourceforge.net/contiki.html
http://www.ist-runes.org/potential_apps.html
http://www.ist-runes.org/scenario.html
http://www.ist-runes.org/docs/deliverables/D2_01.pdf
http://www.eurojenet.com/
http://www.osgi.org/
http://contexttoolkit.sourceforge.net/
http://gerhome.cstb.fr/
http://www.ist-runes.org/docs/deliverables/D1_01.pdf
http://www.ist-runes.org/docs/deliverables/D1_05_02.pdf
http://fractal.objectweb.org/specification/index.html
http://www.cl.cam.ac.uk/~cm542/papers/jwin.pdf
http://www.ist-runes.org/docs/deliverables/D5_01.pdf
http://www.ist-runes.org/docs/deliverables/D5_02.pdf
http://www.ist-runes.org/docs/deliverables/D5_02_01.pdf

